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Order a s contributions to the energy shifts in gluonia are studied in the MIT bag model. The 
naive result that M(0- +) > M(0 + +) is preserved for a s ~< 3, although M(0- +) < M(2 + +) results 
for a s ~> 0.54. The 0- + and 2 + + can thus be identified with L(1440) and 0(1640) for reasonable 
values of a s and bag size, in which case the 0 + + mass is predicted to be -- 1.0 GeV. 

1. Introduction 

Recently there has been an upsurge of interest in gluonia  - color singlet b o u n d  

states of two or more gluons - and  speculation that low-lying 0 -  + and 2 + + states 

may already have been manifested at 1440 and  1640 MeV [1-3]. The M I T  bag 

model has been cited as a guide to g luonium masses [4]; it yields degenerate 

0 + + , 2 + +  states at ~ 1 GeV and  0 - ÷ , 2  - +  states at ~ 1300 MeV before hyperfine 

splitt ing effects arising from single gluon exchange and  the four-gluon interact ion 

are included. 

The recently developed formalism for QCD  per turba t ion  theory in a finite 

spherical cavity [5-10] enables the effects of gluon exchange to be computed  

directly. To date this has been applied only to quarklei and  now for the first time we 

apply it to gluonia. We find that the 0 ÷ +, 2 + + degeneracy is lifted, and that it is 

possible to fit the 0 -  + and 2 + + states with plausible parameter  values a s = 0.75, a -  

= 0.22 GeV. (This radius is essentially the anticipated value from quark bag 

phenomenology.)  With  these parameters,  the model predicts a scalar glueball at 1.05 

GeV. 

The paper  is organized as follows. 

We begin with the QCD hamil tonian,  working in the Coulomb gauge, and define 

the gluon and  quark modes in a cavity. Interact ion vertices for gluons a n d / o r  quarks 

are then discussed. 

tCurrent address: L.D. Landau Institute for Theoretical Physics, Academy of Sciences, 117334 
Moscow, USSR. 
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In sect. 3 the derivation of the three-gluon and four-gluon contact and Coulomb 
vertices is shown in detail, and specific cases are evaluated numerically for lowest 
mode TE and TM gluons. Application of these results to the second-order energy 
shift in gg --, gg is made in sect. 4. The phenomenological consequences of the mass 
shifts in (TE) 2 and (TE)(TM) g luon ia -  0 + +, 2 + +, and 0 -  + states - are discussed 
in sect. 5. 

Finally, in sect. 6 we briefly summarize our results and conclusions, and we follow 
this with mathematical appendices on vector spherical harmonics, vector Fierz 
transforms, cavity Coulomb integrals, and cavity gluon vertices. 

2. Definitions and preliminaries 

2.1. HAMILTONIAN 

The hamiltonian for quarks and gluons may be written 

HocD: f dx: { Ho( A) + Ho(~k ) + ½gfab~Ha" (AbxA c) 

+ ¼g2fabc faae(Ab.  A a ) ( A  c • A e) 

) 1 ffdxdyp°(x)G(x, -ggTv-A ° (2.1) 

where H0(A ), H0(~p ) are the "free" gluon and quark hamiltonia 

Ho(A) =½1A l + lv Xa~l 2, 

H0(~)  : i~p*~, (2.2) 

and the charge density to lowest order is 

) p a =  :g t _ _ f a b c ~ b . A c  • (2.3) 

(Small latin indices are SU(3) 8 color labels.) Higher order corrections arise from 
ghost loops (covariant gauges) a n d / o r  modifications to G(x, y) in the Coulomb 
gauge. Throughout this work we shall employ the Coulomb gauge. 

In some earlier bag model applications the empirical magnitude of g has been 
reduced by using g'  ~ ½g (thus g'fabCHa" A b X A c appears in the first line of HQCD). 

We think that it is better for future applications if we adopt the more conventional 
normalization forthwith. Consequently some factors of two or four may appear 
relative to ref. [5-9]. 
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The gluon and quark field operators will be expanded in classical modes as 
follows: 

-- i t~nt  a , io~nt a~ A ~ ( x , t ) = e ~ E { a n ( x ) e  an+An(x)e  a n }, (2.4) 
n 

~pC( x, t) = c Y, {~p,( x )e-i=.tb~ + iyz~p*( x )ei~'.'d~* } , (2.5) 

where e ~ and c are unit color 8-vectors and 3-spinors and the sums are over the 
mode functions ~kn, An. These fields are normalized so that a one-particle state which 
is free but confined to the cavity has energy %, 

f cf c H 0 =  dx:Ho(A)+Ho(+) :=  E %a,aYan=+ E%(b[, b,~+d~,tdC), (2.6) 
a , n  c , n  

and hence 

f dxA*, .A n = ~'~8nn,, fdx q/,q,, = 8,, . .  (2.7) 

2.2. GLUON MODES 

The normalized classical gluon modes are of TE (" magnetic") and TM ("electric") 
type: 

TE: 

TM: 

Aim = a'fejj( oar ) Yjjm, (2.8) 

Ajm _ ( _ )m+l (2.9) . - -  A j , _ m  , 

Hjm-- iafE { j~ljj_l(oar)Yjj_, , ,-~-jj j+l(oar)Yjj+,, ,},  (2.10) 
2jCUV-f 

/-/j* = ( - ) ' ~ + ' H j  _m ; (2.11) 

Aim-- a'fM { j~l~_l(oar)Yjj_lm-~j~+,(oar)Yjj+tm} (2.12) 
2j07  

= ( - )  Aj,_ m, (2.13) A j, m m 

l-lj,, = iafMoajj( oar ) Yj~,,, (2.14) 

n,,~ = (-)~"h,, .  _ ~ ,  (2 .15)  
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with the normalizat ion 

2 "~(XJ ) - ta - '  
Xj 

(2.16) 

a~ M = IX; ,/zjj+ ,(X j ) - ' a - '  I • (2.17) 

The mode  numbers  Xj ~ oaja and modes are those given by Barnes [11], al though 
his gluon normalizations {aj} are ~/2 too large. 

The mode numbers  for the first few modes are 

j , 
TE:  J ) - , (X)  = 7-~TJj+,(X) (2.18) 

JP X 

1 + 2.744 6.117 
2 -  3.870 7.443 

(2.19) 

TM:  Jj(X) = 0 (2.20) 

JP  X 

1 - ( 2 . 2 1 )  

2 + 
4.493 7.725 
5.763 9.905 

As we shall repeatedly consider the lowest TE  and T M  modes, their properties are 
of special interest. They  are explicitly 

A iTl~m = Ol I Jl ( ldr)  YIlm, (2 .22 )  

a I = 1.819a - l  , to = 2.744a - t  , yttm = - - i ~  ~ × e,,,, (2.23) 

AITm M : ~ ' l(  ~-~3Jo( OOtr ) Y10rn - -  ~ J 2 (  09'r )Yl2m } (2.24) 

_ a', {(2jo(oa,r ) _ j : ( c o , r ) ) e ~  + 3/2(¢o'r)~-em~}, (2.25) 
2a a7 

' = 2 . 1 7 2 a  - t  , ¢o '=4 .493a  i (2.26) 

Some properties of the vector spherical harmonics are given in a brief appendix.  
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3. Vertices 

3.1. QUARK-GLUON VERTEX 

In ref. [5] it was shown that the emission vertex for a TE "magne t ic"  gluon f rom 

an S-wave quark mode in a cavity can be written as (with our normalization) 

= -- ( d x  Jn,,, .A*  k = igo .  e*-g-e  a a - ' ,  (3.1) HI 8(g  d 

where o and ½M give the spatial and color properties of the quark current, and e and 
e ~ are the spatial and color orientations of the gluon. On  integrating over the cavity, 

the spatial dependence of  J .  A* yielded the Inm(X ), which is a function of  the modes 
n, m of the initial and final quarks and the gluon mode  number  X = %a .  

When the gluon is in the lowest TE mode (X = 2.744) and the S-wave quarks are 

massless, we find 

g{l} 
= 0.1389g. (3.2) 

To fit the hyperfine splittings of  quark systems, a value a S = 2.2 was required in 
ref. [12]. F rom the structure of  H I in (3.1), we see that the effective expansion 
parameter  is gI/8~/gTX,  which is small even though a s is large. This provides some 

a posteriori justification for the applicability of  lowest order perturbat ion theory in 
the bag model  with large values of  a S, al though there is reason to believe that the 

very large a s = 2.2 found by the MIT  group is an overestimate (see sect. 5) and [13]. 

As we shall see, gluon bags do not  require such a large a s. 

3.2. THREE-GLUON VERTEX 

The three-gluon part  of  H I in terms of  field operators is* 

H~3~ = ½ g f " b c f d x : H  A • ( A  8 × AC):  (3.3) 

Inserting the gluon field expansion in bag modes (2.4), we may separate the part  
of  H I that creates two gluons (A,  B) from one (C) :  

H~3)(g gg) - !,,¢abc~ ,,t ,,t ,~ 
-"') - -  2 , 5 . J  " ' * A B , C ~ A ~ B ~ C ,  (3.4) 

* Capital letters implicitly are color, mode, and polarization labels, if appropriate. Small letters refer to 
color only. 
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where 

MA..c--- fdx{UA*.  (a"* × AC) -- U"*. < A~* × Ac) + Uc.  < A" × A")*}. 

(3.5) 

(Note  the symmet ry  ¢ABC~r J ~"AB, C ~ - f B A C M B A ,  C') This  (g ~ gg) opera tor  may  be writ- 

ten as a vertex 

 36, 

7 gi AB, C 

For  the special case of  all gluons in the lowest TE  mode  (X = 2.744) and with 
arbi t rary  polarizat ions e A, e 8, e c, the overlap integral MAB ' c is 

_ i (  e A )< e S ) ,  "eC~gfabc 3a~o~ foar2jl( o~r )2(jo( o~r ) +jz(  o~r ))d r I ~ ~ b ~ '  ~ ~ ( T E  3 ) 

g J  1v1~ B, C - -  2 ~  

= - - i (e  A × e " ) * .  eC~gf  abe. t , a - ' ,  (3.7) 

where t I = 0.1919. 
As a simple application,  consider the ampli tude to go f rom a ( + ,  c) lowest mode  

TE gluon to a ( + ,  a),  (0, b) pair  of gluons; 

(*.c) ! PERMS ] I 
(o, b) 

- -  ~ fabc t~(TE3)  4- g /'bacRAr(TE3) 
- 2 J , ' * + o , + - ~ J  ~ ' - o + , +  

z o" {abctg'f(TE3) 
& J  ~'* +0, + 

= - i ( e +  ×eo)*.e+gf~hCtta  1 

= --gfabc(o.1919)a-I .  (3.8) 

The  polar izat ion vectors are the usual spherical basis vectors e+ = ~-2~ ( ~ . ~ -  i f )  

and e 0 = L 
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The 3-gluon vertex function for different gluon modes simply changes the numeri- 
cal coefficient (0.1919) found above for the lowest (TE) 3 vertex. Another vertex we 
shall require is (TM)--, (TE, TM), where the TE is again X = 2.744 and the lowest 
TM is X' = 4.493. This vertex is 

• ~A(TM)  
ec-~gf t2a (3.9) C(,M) " ~ ' ~ Q  S(TE) = -- i (e  A X e B)* -  ' abe -1, 

where t 2 = 0.1532. 

3.3. FOUR-GLUON VERTEX 

The four-gluon part of HI in terms of field operators is 

U~ 4)= ~ g 2 f X a b f x c a f d x : ( a A X A B ) ' ( A c × a D ) :  (3.10) 

As we are primarily interested in gg-+ gg amplitudes, we again expand the field 
operators in bag modes (2.4) and keep the part of n~ 4) proportional to at2a2: 

Hi(a)(gg ~ gg) = ½g2 f dx { fxacfxba( A A X A C*) " ( A B X A o , )  

+fxabf~Ca(AA "Ac*)(A B .AD*)}a*ca~aAaB. (3.11) 

The second term gives zero on color singlets; keeping only the first term, we write it 
in the form 

Hx(4)(ggl g g l ) = ,  2 . . . . . .  be,,  t t (3.12) --+ ~g J J J~aAB, CDaCaDaAaB. 

The overlap integral is simply 

MAB, co = f dx(  A A X AC*) . ( A B X AD*). (3.13) 

With four gluons in the lowest TE mode and with arbitrary polarizations ea . . . . .  e D, 
this integral may be evaluated to yield 

(TE4) - -  [~A X e C ~ )  • ( e  B X ~ o , )  
B, C D -  \~" 

3 (oqa)._____~4foXrl2jl(ll)4drl.a_ 1 
× 16~ X3 

= ( e a × e C * ) ' ( e B × e D * ) ( 6 . 1 7 7  • 10-3)a - I .  (3.14) 
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We may rewrite this as a spin-spin force, as the spin vectors are S = ie i X e~ (see 

appendix B): 

MAUVE") - -  ( S  1 • $ 2 ) ( 6 . 1 7 7  • 1 0 - 3 ) a  - '  . B,CD (3.15) 

This shows that the 4-gluon contact term is pure spin-spin for (TE) 2 glueballs. 
Attaching the color indices to this matrix element, we have for the (TE) 4 vertex and 

lowest mode gluons the general result 

TE TE Ar~io = -- fxacfxbaf ,( S, " S2 )asa-  ' , 
g 

(3.16) 

where fl = 38.81 • 10 - 3 .  

For (TE)(TM) glueballs we have two types of diagrams, a direct one and a crossed 
one. The direct diagram is pure spin-spin; 

TE TE 

A X c  = --fxacfxbafz(S," S 2 ) a s a - ' ,  
B 13 

TM TM 

where 

f2 = l(°tla)2(°t~a)2fol~12J,(x~)212jo(X'~l)-J2(x'~)] 2dT/= 11.44-10 -3 , 

(3.17) 

X = 2.744, X' = 4.493. (3.18) 

The crossed diagram has a rather complicated spin structure. We Fierz transform 
it into products of bilinears in the first (e a, e*) and second (e~, e~) gluon polariza- 
tion vectors, as discussed in appendix B. The bilinears are 

(1) scalar-scalar: 
(spin-independent) qh ~2 = ( e a - e ~ ) ( e  B • e3)  ; (3.19) 

spin-spin: 
(2) (spin-dependent) S , -  S 2 = (ieA × e ~ ) .  (ie 8 × e~) ; (3.20) 

tensor-tensor: 
(3) (spin-dependent) 

Tl" T2 = T 'JTjJ 

= [ eAied * + e~ec i* 
2 3 C - ~ D ]  " 

(3.21) 



388 T. Barnes et al. / Hyperfine splittings 

In terms of these invariants and three overlap integrals, the crossed diagram is 

TE TM 

A ~ c  = --fxa'fxbd{ 4I,( *, *2) + ~( I, + 2 I  2 + 13)(S,- $2) 
B D 
TM TE 

+ (½I, +212+½13)(T 1 • r 2 ) } a s a - '  (3.22) 

The three overlap integrals are 

Il I I :  "~2z , x2/ 'l  2 ' "  \2 
12 =~l, otla ) ~otla ) Jo'q]l~X'q) 
I3 

(2jo(x',7)-j~(x'~)) ~ ] 
(2 Jo(x'r/) -- j2 (x'r/)) 3j2 (x'r/) drl 

9j2(x'~) 2 

34.31 ] 
= -33 .56  "10 -3 • 

72.32 
(3.23) 

With this result, we may write the crossed (TE)Z(TM) 2 vertex in the relatively simple 
form 

TE TM 

B D 
TM TE 

= -- fx"fxbd{f3(  *l *2) +f4(S,  " $2) +fs(T~ " T2)}asa- ' ,  (3.24) 

where 

f3 = 15.25- 10 -3 , 

f4 = 6 .59.10 -3 , 

f5 = 12.48.10 -3 . (3.25) 

3.4. FOUR-GLUON COULOMB VERTEX 

The instantaneous Coulomb interaction between gluons gives a contribution to the 
hamiltonian of O(as). In matrix elements between Igg) states in the bag, we may 
write this as an effective four-gluon interaction. This interaction is not just a mass 
shift, as might naively be expected, but has important spin-dependent contributions 
as well. 

The gluon color charge density is 

p~(x) = _gfabc:.4 b .Ac: 

= -igf~hc(OaB + wc)A*B(x ) • Ac(x)atBac.  (3.26) 
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The charge density interacts with itself through a Coulomb potential which is a 
modification of the free space G O = (R)-1, due to the bag boundary conditions [10]. 
(This is discussed in appendix C.) 

Hcou_____~_ff~ f fdxdyp(x)aG(x, y)p(y)O, (3.27a) 

where G is 

1 a-l{~ - --2 In( ~+ /.tYk 
G ( x , Y ) - i x _ y  I + , - ~ : - ) }  

Co(X, y) C(x, y) 

# = cos Oxy, ~ = rxry/a 2 , Id = ~/1 - 2lxX + 2~2 . (3.27b) 

The relevant at2a 2 part of/-/co u is 

• 2 

~,-- l s  ] . . . .  -~xbd/ 
" -- ~ : J t~°A+~Oc)(CoB+toD)Icouatca~aAaB,  (3.28) 

I c o u : / f d x d y G ( x ,  y ) [ A A ( X  ) . A * c ( X ) ] [ A B ( y  ) .A~( y ) ] .  (3.29) 

Now consider the Coulomb interaction for (TE) 2 glueballs. For a general polariza- 
tion the A~ E field in the lowest mode can be written 

i ~ 3  A ~ E ( x )  -- -- d-~-Z a l j l ( ~ o r ) ( ~ X e m ) = N l j l ( t o r ) ( t ' X e m )  (3.30) 
v o . .  

where the {era} a r e  the usual spherical polarization vectors. Inserting these in (3.29), 
we find the Coulomb integral 

X [ ( x X a ) . ( x X b ) ] [ ( y X c ) . ( y X d ) ] G ( x , y ) .  (3.31) 

We have abbreviated e a = a . . . . .  e~ -- d. 
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It is convenient to consider a more general integral with the polarization vectors 
factored out, which we may reduce to two coefficients: 

jj,,xd,,I l' t "'°r" ) 
bag ~ x ! ~ ry 

2 

xixjy,,,ytG(x, y) (3.32) 

= Jl~ij~kl  "~- J2( ~ik~jl -~- ~il~jk ) .  (3.33) 

In terms of this the (TE) 2 Coulomb integral is 

Icou(a, b, c, a )  = I N, 14((4J1 + 2J2)a • cb. a+J2(a,  bc. d+ a. db. c )} .  

(3.34) 

To classify the interaction according to its spin dependence, we must Fierz 
transform this expression into a product of bilinears in the first (Ca, e*) gluon and 
second (eb, e~) gluon polarization vectors, as we did previously for the (TE)2(TM) 2 
four-gluon vertex. We find that the Coulomb integral is a mixture of scalar-scalar 
and tensor-tensor: 

Icou(abcd)=lNal((4jl + 8Jz)( @,@2)+ 2J2(T1. T2) } . (3.35) 

Replacing JL and ,/2 by nla 5 and n2 a5 (n 1 and n 2 are dimensionless), the general 
(TE) 4 vertex in the lowest mode (ore = 2.744) is 

TE TE 
A " " ~  C 

t 
I = __fxacfxbd(9X2°t4a4) ( ( 2 n 1 1 6 9 7 '  + 4 n 2 ) (  ~'  ~b2)+ n2(T1" Tz) )asa - I  

(4.698) 

= --fx"fxSU(c,( ~, ~2) + c2(Tl " T2)}asa- '  • (3.36) 

The numbers n t and n 2 are given by the following integrals over unit spheres: 

1 

• 2 .  2 1 

nl + 2n 2 ] ,  (3.37) 

(X = o~a = 2.744). 

Numerical evaluation gives the results 

c I : (90 ± 1)- 10 -3 , c 2 = (40.5 ± 0 . 2 ) -  10 -3 . (3.38) 
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The Coulomb interaction for (TE)(TM) glueballs may be treated similarly. The 
required (TM) vector potential is 

A TM = Nf{(2jo(~o'r ) -y2(~o'r))em + 3j2(~o'r)(~. era)l" } (3.39) 

and we may similarly write the overlap integral (3.29) in the hamiltonian (3.27) in 
terms of integrals times bilinear products of polarization tensors. The Coulomb 
interaction is scalar-scalar and tensor-tensor for the direct (TE)(TM)~ (TE)(TM) 
graph, and pure spin-spin for the crossed graph (TE)(TM) ~ (TM)(TE); 

TE TE ( ) 
a ~ ,  c :_ _fxa~fxba XX'a2a'l 2a4 {n3(qhq~2) + n4(T1 " T2))asa-' 
B rM~.~.~  , 32,n-2 , 

(0.6~993) 

(3.40) 

= --fx~fxba{c3( ep, q~2) + c4(T," T2) }asa- '  • (3.41) 

As before, we may write the numbers n 3 and n 4 in terms of double integrals over 
unit spheres: 

n 3 = 2m o+  2m 1 + ~ m  2, n4 = --2m2, (3.42) 

1 

• 2 • t . , 2 

3too= f f  dxdyaG(ax, ay)J,(xrx) [2Jo(Xry)--J2(Xry)] , 
o 

(3.43) 

1 

3ml q-2m2] f f  dxdyaG(ax ,  " 2 . . . .  = aY)Jl(Xrx) [4Jo(X ry) +Jz(X ry)] 
½ml +2m2]  o 

[ 1 ]  
X " t sdx ry) cos20xcos% (3.44) 

which gives the numerical values (with X - 2.744, X' ---- 4.493) of 

c 3 = ( 1 2 2 ± 3 ) . 1 0  -3 , C 4 = ( 1 . 5 ~ 0 . 1 ) . 1 0  -3 . (3.45) 

Finally, the crossed interaction is pure spin-spin: 

a~g.,~,.....L%,, =_fxocfxba( (X+X')2a2a,2a')ns(S, . S2)asa-, 
B ,"" '~ ' .~  o 128~r 2 
TM TE , 

(0.64711 

(3.46) 

= -fx~¢fxOacs(S , • S z)as a - I  , (3 •47) 



392 T. Barnes et al. / Hyperfine splittings 

1 

. s  = f f  dx  d y aG( ax, ay)(  j,(Xrx )[2 Jo(X'rx) - j2(x 'rx  )]} { r x --+ ry }cos 0xCOS Oy, 
o 

(3.48) 

c 5 = (72.4 -+ 0.2). 10 -3 . (3.49) 

This completes the set of Coulomb interaction effective four-gluon vertices we 
require to calculate the O(as) energy shift of low-lying (TE) 2 and (TE)(TM) 
glueballs. This calculation is described in the following section. 

4. gg --, gg second-order energy shift 

If I d p )=  Ig0g0) is a state of two bag-model gluons in a definite mode and I~) is 
the physical glueball state including interactions, then to O(as) 

@IHI+> = ( +l(Ho + Hco~ + H(4))I dp> 

+ ~] (+IH(3)lx)(xlH(3)[~) 
x=+g (E+-E+g)---oog 

= Eo(glue ) + BE(glue) = (A o +A,as )a  t, (4.1) 

where H 0 is the free hamiltonian and Hco u, H (3) and H (4) a r e  the Coulomb 
interaction, the three-gluon interaction, and the four-gluon interaction, respectively. 

In a fixed cavity of radius a, the energy of the two-gluon system plus the bag is, 
for both gluons in the lowest TE mode (X = 2.744), 

Eglu e q- Ebag = A a - 1  -}- 4¢rBoa3 , (4.2a) 

bag energy 

where A = A o + A l a ~ +  . . . ,  and Ao=2X=5.488 .  Minimizing this energy with 
respect to a, we find that at the optimum radius a 0 the bag plus glue energy is just 
times the glue energy A a -  l alone: 

(ISgAue+Ebag)la~=A/a,~so=Aao ' + 47rBoao 3= (4)" (Aao ' )  

glue + bag energy 

(4.2b) 

For simplicity we assume that this radius a o is the same for all glueballs. In a strict 
spherical bag calculation, the radii vary both with a s and from state to state. We find 
that these model-dependent variations are typically ~ 10% effects, and that they do 
not significantly alter our conclusions. 
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We neglect other a-1 effects such as gluon self-energy diagrams (~  a~a J) and 
the Casimir contributions (~a-~) ,  which are not yet well understood [13, 14]*, 
though we show elsewhere that they cannot be large on phenomenological grounds 
[23]. 

The three- and four-gluon interactions will generate spin-dependent energy shifts 
proportional to asa -1. Finally, the Coulomb interaction gives rise to comparable 
spin-dependent shifts as well as relatively small spin-independent ones. 

Now we shall derive the O(as) corrections to the zeroth-order bag model (TE) 2 gg 
state energies, using the diagrammatic techniques discussed in sect. 3. We proceed by 
calculating the dlasa-1 gluon energy shift in (4.2a); the total gluon plus bag energy 
shift with our approximations is always ~ times this. 

4.1. 2 ++ 

First consider the lowest-lying 2 + + gg state, and the effect of one transverse gluon 
exchange. This energy shift is diagrammatically 

. °  . °  

A .~;=~ x B '~ B E 1 
c=x =(--iff~bt,(ec×eA)*.es½ga 1)* ~(2!) ~(2!)  (_w~) 

o ~ v  A C EF 
perms perms 

X (--ife/dtl(eE X er)*" eD½ga-') 

(4.3) 

(4.4) 

= x/d x.b 4~rt2 
f f ( X )  (eA×e~)'ex(eD×e~-) 'e*xasa- '"  (4.5) 

This gives a transverse gluon exchange energy shift for the 2 + + state of 

rEVue(2++)= !6(2!)2( fxbafxab 4rrt2~ S, S2a~a -1) 24~rt~ __ . - -  O t s a -  1 . 
X X 

(4.6) 

Recalling the contribution of exchanging only the lowest TE mode from appendix D 
(D.1), 

we find 
t, =0.1919, (4.7) 

3Eg~ue(2 ++) = 1.012a~a -1 " (4.8) 

* Baake [15] notes that the physical vacuum outside the perturbative bag will also contribute a Z a - 1  

term to the zero-point energy, and that this exterior contribution is usually arbitrarily neglected. 
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TE TE 

Exchange of higher modes  ves zero }o0 or much sma er additional 
.TE TE, 

contributions ~ ~ ~  ; the next highest (6.117; 1 +) TE exchange increases ~E T 

(2 + +) to 

8Ee~(2 + +) = (1.012 + 0.008)a~a- ' .  (4.9) 

Exchange of angular excitations also gives very small contributions, due to small 
angular overlap integrals. 

The four-gluon contact term may be treated similarly, to give 

~p(4)/ .~++)= 1 }~,,,,~/2,"~ ~,.,,~/2! NV'~÷ b 

= ~6 (2!)2( - - f x ~ c f x ~ f l S  l • Szasa -I  ) 

1 
1 ~  (4.10) 

(4.11) 

= - 6 f f f t s  a - 1  • (4.12) 

Recalling the four-gluon overlap integral for (2.744) mode from appendix D (D.3), 
we have 

fi = 38.81- 10 -3,  (4.13) 

SO 

6E~42e (2 + +) = - 0.23294~a- ' .  (4.14) 

The final contribution to the 2 + + energy shift is the Coulomb energy. We recall 
the form of the effective four-gluon vertex due to Coulomb exchange for (TE) 2 
glueballs from appendix D (D.6). 

" = - - f x ~ c f x b a ( c l (  q~l *2) + c z ( T l "  T 2 ) ) a s  a - l "  (4.15) 
B rE"U~rE D 

For j = 2, the tensor and scalar bilinear products are 

(2 ++1 q~l~z]2++)= 1, (2++IT, • T z l 2 + + ) = ~ .  (4.16) 

We now take the matrix element of (4.15)just as with the four-point interaction: 

+b 1 
8EC°~(2++)=~1~(/'~ ~ 2 '  ~ 2 ' ) ~ ~ ' e  ¢16 \ "  .b ) 

= l~(2!)2[(-- fxabf ~ab)(c' + lc2) %a-1 ] = --6(c I +/c2)asa- 1 , 

6ECou(2 + +) = -- (0.581 + 0.006)asa-  ' .  (4.17) 
glue 
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As a check, we note that using the (incorrect) free space Go=(Rxy) -1 gives 
6E -- - 3.56asa- I, which compares quite favorably with the naive estimate for a flat 

charge distribution in free space: 

8Ecou(flat) = (~a~a -1) ( - 3 )  (2) = -3.6erda -1. (4.18) 

charged 8- 8 color two 
sphere factor gluons 

Adding the three contributions - transverse, four-gluon, and Coulomb - we find 

a 2 ÷ ÷ shift and total energy of 

6Eglu~(2++)=( , 1.012 , ~-0"233• ,--0"581 )O~sa ' , ~ . .  , 
tra ns~verse four-gluon color 

gluon exchange interaction Coulomb 

(4.19) 

Etot(2++) = ~ (5.488+O.198a~)a-t=(7.32+O.26as)a -1 (4.20) 
J 

glue -~ bag 
energy 

4.2 .  0 + + 

The 0 ÷ + energy may be derived similarly, using the matrix elements of S 1 • S 2 and 
T 1 • T 2 given in the appendix. Here we simply quote the result. One transverse gluon 
exchange and the four-gluon interaction are pure spin-spin, and the Coulomb 
interaction is mixed scalar-scalar (spin-independent) and tensor-tensor. With the 
change to j = 0, the three contributions become 

SO 

8Eglue(0+ +) = ( ,-2"024, ,+0"466 , -0.945~ )as a-1 , (4.21) 
transverse 4-gluon Coulomb 

Etot(0 ++) = ~(2xa-' + 6Eglu~(0+ +)) = (7.32 -- 3.34as)a -1 . (4.22) 

Finally, we consider the odd-parity glueballs with j e c=  0 - + , 2 - +  made of 
(TE)(TM) gluons in the lowest mode. This problem will be discussed only schemati- 
cally, as the techniques are the same as those used above in treating even parity 
(TE) 2 glueballs. 

4.3 .  2 -  + A N D  0 + 

The 2 + and 0 -  + (TE)(TM) glueball states are 

12-+>,10-+>= ~ ITEa>ITMa>~C.G. coeffs. 
a 1 

(4.23) 
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As for the 0 ++ and 2 ++ glueballs, there are contributions to the O(a~) energy 
shift due to (1) transverse gluon exchange, (2) the four-gluon interaction, and (3) the 
color Coulomb interaction. Here, we shall first discuss (1) for the 2 - +  glueball, 
following which we give a unified discussion of the terms (2) and (3) for both the 
0 -  + and 2 -  + states. 

There are contributions to the 2 -  + energy shift due to both (TE) and (TM) gluon 
exchange, as the (TM)Z(TE) vertex is non-zero as well as the (TE) 3 vertex. Recalling 
these vertices (D. 1), (D.2), we proceed as in the 12 ++ (TE) 2) energy calculation: 

8Ege(2- +) = ! <,Zo<TEI+,,,.,. ( ~ ",,r,._.t.b<rE ~ 1 
/ / " "~  .b(rMy 

(4.24) 

f~ tlt2 i as a- 1 = 241r + X = 1.202a~a- I. (4.25) 

In contrast to the usual result that exchange of the lowest gluon modes gives the 
total energy shift of the lowest glueballs to a very good accuracy, here we find that a 
second excited mode gives an important contribution. Exchange of the second TE 
mode (X = 6.117) gives an additional 0.388asa-1, which gives a combined shift 

T --+ 1 ~Eg~ue(2 ) = 1.590Otsa- . (4.26) 

Repeating this calculation for general external polarizations, we find that this 
interaction is pure spin-spin, as it was for (TE) 2 glueballs. This means the pseudo- 
scalar matrix element is B E ( 0 - + ) =  -3 .180asa-1 .  

The four gluon contact term produces both direct and crossed diagrams (D.4), 
(D.5): 

(4.27) 

r TE TE 
~E(4) i J ° V b  TE TM ~, 

glue = Z | o / ~ - ~ b  + (4.28) 
~- TM TM o 

= --6(f2(S," 52) q-f3( dOi dO2) -t-f4(S]" $2) + f s ( T l  " T2))as a - L ,  (4.29) 

and the Coulomb diagram also gives both direct and crossed contributions (D.7), 
(D.8): 

8ECou = ¼ l + ' (4.30) 
glue I 

a TM-,~TM b a "~''~w~'~ b TM TE 

=--6(c3( dOidOz)+c4(Tl. T2)+cs(Si.S2))asa-i. (4.31) 
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Specializing these general matrix elements to j =  0 and j = 2, we find for the 
complete O(a~a-  i) 2-  + and 0 -  + glueball mass shifts 

6Etot(2- +) = (4) (1.590 --0.212 

 Etot(0 -+ )  = (4) , -3"180 + 
traqs~verse 

b_a_g gauon 
e~U~y exchange 

Etot(2 - + )  = (9.649 + 0.28as)a - l  , 

Etot(0- +) ---- (9.649 -- 4.08as)a -1 

0. + 

foutr~,lmuon 

- 1.17)a~a -1 , (4.32) 

0.12 i as a-l, (4.33) 

J color 
Coulomb 

(4.34) 

(4.35) 

5. Glueball phenomenology 

There are at present two experimental glueball candidates, a pseudoscalar L(1440) 
and a tensor 8(1640) [3]. These are not in agreement with the zeroth-order bag model 
predictions due to Jaffe and Johnson [4]: 

E(0 - + )  = 1.29 GeV, (5.1) 

E(2 + +) = 0.96 GeV. (5.2) 

To see the effect of the O(as) radiative corrections, recall the results we found in 
(4.20), (4.35) for the tensor and pseudoscalar masses, 

E(2 + +) = [7.32 + 0.26asla - t  , (5.3) 

E(0 - + )  = [9.65 - 4.08as]a -1 . (5.4) 

First we shall make contact with the earlier results of the MIT group. Taking 
o~ s = 0 and B 1 /4= 0.146 GeV, and determining the bag radius by minimizing the 
bag + glue + zero-point energy - Z o  a-1 = - 1.84a -1 [12] (which has since been 
disclaimed by Johnson [13]), we find essentially Jaffe and Johnson's result: 

E(2 + +) ---- E(0 + +) ---- 0.97 GeVla-, =0.199 G e V ,  (5.5) 

E(2 - + )  : E ( 0  - + )  = 1.30 GeVla '=0.,80OeV- (5.6) 

Thorn has calculated some of the spin-dependent corrections to these masses in an 
unpublished calculation [16]. He kept the old MIT parameters and considered 
transverse gluon exchange and the four-gluon contact term and assumed that 
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self-energy diagrams cancel the Coulomb interaction. (See appendix C.) We also find 
that he determined the bag radius after adding these terms to the energy. This 
procedure gives 

-- 1.56 a B~/4=0A46 ~eV 
Z o = 1.84 

= ( OeV OoV } (,.7, 8) 

This result has led to a postulated 2 ++ glueball degenerate with the f(1270) [17]. 
The missing 0 + + is explained away by saying that it mixes with the vacuum, and 
that an orthogonal linear combination is elevated to ~ 1 GeV. 

Now we return to our result for these masses with as and a-1 arbitrary, including 
the four-gluon and cavity Coulomb interactions, but leaving out the zero-point 
energy. As there are candidate pseudoscalar and tensor glueball states recently seen 
at SLAC [3], we shall fit our two parameters to these states. Thus, 

E(2 ++)  = [7.32 + 0.26as]a -1 ---- 1.64 GeV, (5.9) 

E(0 - + )  = [9.65 - -4 .08as l a  - I - -  1.44 GeV. (5.10) 

This requires the parameters 

a-1 --- 0.218 GeV,  (5.11) 

a s : 0.748. (5.12) 

The cavity radius we find, a -  ~ = 0.22 GeV, is essentially the same as the old MIT  
radius a-1 ~ 0.19 GeV. This radius is not really a free parameter  if the bag model is 
correct - the quark bag strength B~/4= 0.146 GeV determines the MIT  gg radius, 

and this is indeed close to our independent fit. 
The strong a s = 0.75 compares favorably with the typical values of a s = 0.6-0.8 

found in potential model studies of the light meson spectrum [18], and a potential 
model of transverse gluon bound states gives M(2 + +)/M(O-+) correctly with the 
similar value of a s = 0.6 [19]. 

An important prediction of the model is the mass of the light scalar glueball. 
Recall that we found 

E(0 ++)  = [7.32 - 3 . 3 4 a s i a - ' .  (5.13) 

With the fitted parameters (5.11), (5.12), we predict 

E(0  + +) = 1.05 GeV. (5.14) 
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This relatively low scalar glueball mass is the clearest test of the MIT bag model 
that we have found relative to the expectation of Shifman [20] of M(0 + +) ~ 1.4 GeV 
and the models of Barnes [19] and Suura [21], both of which give the equivalent 
result M(0 + +) = M(0-  +). It is interesting that a recent SU(2) lattice calculation [24] 
found M(O++)/M(O -+) - -0 .61  -+0.12, which is consistent with the bag result 
M(0 + +) < M(0-  +). 

Historically, the MIT group fitted the light S-wave mesons and baryons with a 
value of a s = 2.2 [12]. Obviously, this is a disaster for the gg spectrum, as it predicts 
0 + + and 0 -  + glueballs with masses of O(100 MeV), far below the 1.5 GeV region. 

It is also disturbing that the MIT value a~ = 2.2 is far from the potential model 
results, which typically give as(bb ) ~0.25,  as(C~ ) ~ 0.4, and as(qF:l)-0.7. What is 
wrong with the MIT bag model? 

The answer is simply that the bag model quark wave functions are uncorrelated, 
which means that there is no short-distance spike in ~k(r) in the S-wave states due to 
the strong attraction of the Coulomb potential. As hyperfine shifts in S-wave states 
(e.g. spin-spin) are sensitive to short distance parts of ~k(r), ( (~(r ) ) ,  ( r  -3)  . . . .  ), they 
are badly underestimated by the smooth j2 + j 2  bag model distributions. To com- 
pensate for the small bag model hyperfine matrix elements in fitting the experimen- 
tal S-wave hadron spectrum, one must increase a s to an unreasonably large value. 
This problem with quark bags can presumably be avoided by allowing mixing of 
radially excited quark modes through the Coulomb interaction, leading to a Coulomb 
spike in ~kbag. 

This shortcoming of bag wave functions does not occur for gg states because they 
all have non-trivial angular dependence of the wave function in the relative coordi- 
nate, and always see an Lef f i> 1', ~bu(O) must be zero. The bag model giuon wave 
functions are a reasonable first approximation to this situation. 

6. Conclusions 

We conclude that the bag model gg states have important O(ets) corrections to 
their masses, and that the recently discovered glueball candidates t(1440) and 
0(1640) can be accounted for with plausible parameter values. We find a strong 
coupling strength a s = 0.75 which is much smaller than the earlier MIT value 
a S = 2.2, and we discuss reasons for this discrepancy. Our results are shown to 
reduce to the earlier results of Jaffe and Johnson in the limit a s ~ 0 and to those of 
Thorn as a special case. 

With the approximations discussed in the text, we find that the MIT bag model 
predicts a scalar glueball at 1.05 GeV, well below the pseudoscalar glueball mass. 

We should like to thank J. Baake, L. Castillejo, M. Chanowitz and C.B. Thorn for 
interesting and useful comments. 



400 T. Barnes  et al. / H y p e r f i n e  spli t t ings 

A p p e n d i x  A 

VECTOR SPHERICAL HARMONICS 

The vector spherical harmonics {FjI.,((~)} are very useful functions for describing 
vector fields confined to a cavity. They are defined as the Clebsch-Gordon product 
of ordinary spherical harmonics (Yl,.} and the spin one spherical unit vectors {em}: 

Yjtm( (~ ) = E ( lt~,m -# l jm)Yt , (~)em_, .  (A.1) 
P 

They are eigenfunctions of j2, L2, and S 2 with eigenvaluesj(j + 1), l(l + 1) and 2, 
respectively. 

They are most useful in manipulations involving V and in doing angular integrals, 
due to the properties [22] 

v( f(r)YJ") = {}/2j--~ (-~+ J+ I f 

} +I ( r f ) Y:?+,m (A.2) - - d - r -  ; 

_ i-j-+ 1 ( 2 l )  Yjm, (A.3) W 2 j + l  d f + J + d r  r v "( f(r)Yjj+lm) = 

v " ( i ( r )Yj jm)  = O ,  

v " ( f(r)YjJ-'m) = dr r 

(A.4) 

(A.5) 

-~r + j +r f ) YJJ"' (A.6) 

i d f  j 

) -- I rrt , 
r 

i / -7+1  d f  j - l f  V×(f(r)Yjj-i.,)= V 2j+l (dr r )Ynm, 

bTm = ( -  Y+'+'+' b , - . ,  

f Yj~,," Y/rm,d~ = 8jj'8,,'Sm,,'. 

(A.7) 

(A.8) 

(A.9) 

(A.10) 
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A few specific {Yj/m'S} for smal l j  and l are 

1 
YlO~ = ----~em, (A.11) 

Yllm FX e,,,, (A.12) 

1 
Yl2,, -- 8 ~ -  {e,,,-- 3(~. em)~ } . (A.13) 

A final useful result is the cross product of two vector spherical harmonics, which 
is implicit in the relation 

f d ~ E , , . . ,  • ( r j2 , :~  × rj3,3,.3) -- iH=¢(zji+l)(2l,+l)(-)/ '+'  

0 0 ml rn2 m3 12 ' 
1 

(A.14) 

where the curly bracket is a 9j symbol and the 3j symbols are related to CG 

coefficients by 

(jlm,, j2m21j3m3)~_(_)Jt-J2-m3~(mlJ, m2J2 --m3J3 ). (A.15) 

Appendix B 

VECTOR FIERZ TRANSFORMATION 

The gg - gg matrix elements we have derived are necessarily proportional to the 
* * It is convenient to write the four external gluon polarization vectors eA, eB, eo eD. 

matrix dements  in terms of t-channel invariants analogous to the spin-spin operator 
familiar from e + e -  and qcl hamiltonians, as these operators are diagonal on states of 
definite jvc. The three SO(3) tensors we may construct from e A and e~, for example, 
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e *  thl(scalar) = (eA" c ) ,  

S,(spin vector) = ( ie A × e~ ) , 

TliJ(tensor) = (½ (eje~* + eJe~*) -½8iJeA . e ~ ) .  

(B.1) 

(B.2) 

(B.3) 

The most general gg -0 gg effective hamiltonian may be written as a sum of three 
such invariant products: 

Hef f = h , (  ~b 1 ~b2) + h s ( S  1 • $2) + h r ( T  ' • T2). (B.4) 

Reducing invariant products of tensors in the s- or u-channel [for example the 
u-channel spin-spin term (ie A × e ~ ) . ( i e  B × e~)] to this standard form requires an 
SO(3) Fierz transformation. The general result is given below 

3 

I(m)(  a ,  b ) " I(m)(  a ', b')  = X c mn I (") (  a ,  a ' )  . I ( " ) (  b ,  b')  

,= l Fierz 
coeffs. 

(c m"} 

rn; n 

1 

2 

3 

1 (1) = dp, 1 (2) = S i, 1 (3) = T i j ,  

I 2 

! 1 
3 2 

2 I 
3 2 

5 5 
9 12 

(B.5) 

(B.6) 

In the example quoted previously, the u-channel spin-spin force is the following 
sum of t-channel invariants: 

(iea X e~)) .  ( ie  s X e~) = { ¢,(ea,  e~) ,#2(eB, e~) + ½S,. S 2 -- T 1 • T 2 . (B.7) 

The antisymmetry of S and symmetry of ¢ and T has been used to obtain this 
result. 
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This transformation is useful because the t-channel invariants have simple eigen- 
values on the j e c  gg states considered in the text of the paper: 

( ,I,, ,2)IJeC> = IJJ'C>, 

(S  1 • $2) IJ~'C) -- [½J(J  + 1) -- 2] IJeC),  

( T , .  7"2)IJ ec )  = [kSj2 - 5~j1 "~ 5~j0 ] IJPC). 

(B.8) 

(B.9) 

(B.10) 

Appendix C 

CAVITY COULOMB INTEGRALS 

In free space, the Coulomb Green function is given by (Rxy) - l ,  and the energy of 
an assemblage of charges is just an overlap integral of the charge density self-inter- 
acting through this Green function. 

If instead we assemble the same charges in a cavity and impose the bag boundary 
conditions h .  E a Is = 0, we find that the Green function must be modified to insure 
that the boundary condition be satisfied for an arbitrary charge distribution. As the 
Green function is modified, so the energy needed to assemble the charges is different 
than if they were brought together in free space. 

This modified cavity Green function for a cavity of radius a was derived by Lee 

[101: 

, 1 a---7- } Pl(cOSOxy) - -  1 , (C.1) 

free space , ,.-- , 
cavity modification 

l{[, '--l ln('+l  } 
= G0(x, y) + C(x, y) ,  (c.2) 

where 

,tt = COS Oxy , ~ = rxrv//a 2 , ~ = ~1 -- 21~ + 2~ 2 • (c.3) 

The final - 1 in the cavity modification C(x,  y )  deserves comment. It is imposed 
by requiring that the integrals ( 1 / 8 ~)  f fbag OxGxy Oy d xd  y and ½ fbag [El 2d x inside the 
bag give the same energy; we may check this - 1 by noting that a flat abelian charge 
distribution 00 = Q / V  gives an interaction energy of 0.1asa -1, calculated either 
using E=(1/8"rr)ffbagOxGxyOydxdy o r  ½fbaglEl2dx. Lee states that the constant 
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( -  1) in G.,,y has no effect on the energy of color singlets, as it is ~ :Qa: :Qa:. This is 
only true if we include self-energy diagrams without renormalization, in addition to 
the Coulomb gluon exchange. We have considered only gluon exchange and contact 
diagrams, as the self-energy diagrams are presumably cancelled by counterterms 
which define the gluon propagator at some renormalization point. The constant in 
Gxy does indeed shift the color singlet energy if we neglect the self-energy diagrams, 
as this makes a c o n s t a n t  ~ :Q,.,Qa: rather than :Q~: :Qa:. :Q'~Q'~: is not zero on color 
singlets in general. We believe this procedure is correct, as it is what one would do in 
treating positronium to this order. There, Coulomb photon exchange is certainly not 
cancelled by self-energy diagrams. 

The effect of replacing Go(x, y)  by the cavity G(x, y)  (C.2) is just to change the 
numerical values of the five coefficients (Cl, C2, C3, C4, C5) which we evaluated previ- 
ously in deriving the effective Coulomb vertices with a cavity Coulomb propagator 
(3.36), (3.41), (3.47). These coefficients with a cavity Green function, together with 
the free space (Go) coefficients for comparison, are found to be 

G O = Rxy I G = cavity Green function 

cl(TE z scalar) 
c2(TE 2 tensor) 
c3(TE TM scalar) 
c4(TE TM tensor) 
cs(TE TM spin-spin) 

(590-+ 1)- 10 - 3  

(23.1 ±0.2)-  10 -3 
(622 ± 3)- 10 -3 
( - 2 . 0 ± 0 . 1 ) .  10 -3 
(29.2 ± 0.2). 10 3 

(90±  1)- 10 -3 
(40.5 ± 0.2). 10 -3 
(122 ± 3). 10 -3 
(1.5 ± 0.1). 10 - 3  

(72.4 - 0.2). 10 -3 

Two important effects are evident; first, the large spin-independent Coulomb 
shifts c~, c 3 are essentially eliminated when the charges are assembled in a cavity. 
Hence, the ~ - 3 a s  a-~ Coulomb shift in free space is missing in cavity glueballs. 
Second, the spin-spin crossed diagram given by c 5 is approximately double the free 
space result; this term in the cavity cancels 40% of the transverse gluon exchange 
spin-spin term instead of the 20% found with G O . It is more important than the 
four-gluon interaction spin-spin term! Finally, we note that the tensor-tensor spin- 
dependent Coulomb terms are always rather small. 

Appendix D 

VERTICES 

In this appendix we collect all the three-gluon (t), four-gluon (f) and Coulomb (c) 
vertices we have evaluated in the text. TE and TM refer to the ¢0a =- 2.744 and 4.493 
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gluon modes, respectively: 

TE A 

r ~  = _ifabCtl(eA × e n ) ,  eC½ga-i c • 

B 

t I = 0 . 1 9 1 9 ;  

T~A 

C T ~ ¢ . ~ B  = --ifabctE(e A X eB)* . eC½ga - I, 

405 

(D.1) 

t 2 : 0.1532 ; 

TE TE 

ATE~TE C : - - f x a c f x b a f l ( S  , • S2)otsa-'  , 
B P 

f l  = 38 .81  • 10 - 3 .  

TE TE 

ArM~rMC = --fxacfxbaf2(S 1 . S2 )asa -  ' , 
B D 

(D.2) 

(D.3) 

f2 = 11.44. 1 0 - 3 ;  (D.4) 

TE TM A~ C _ _  xac xbd 
- -  - - f  Y (f3( , q~2 )+ f4 (S , 'S2 )+ f s (T , "  T2)}asa -1,  

B D 
TM TE 

f3 = 15.25 • 10 -3,  

f4 = 6 .59 .10 - 3  , 

f5 = 1 2 . 4 8 -  1 0 - 3 ;  ( D . 5 )  

TE TE 
A ~ C  

i 
i 

B ~ D  
TE TE 

: _ f x , , c f x b d (  Cl( qh if2 ) + c2(Tl" T2)} Otsa- l ,  

c I = ( 9 0  -+- 1 ) .  10 - 3 ,  

C 2 = (40.5 ---+ 0.2). 10 -3 ; (D.6) 
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TE TE 

' = - - f x a c f x b d ( c 3 (  ~1 dP2) -'t- c4(T 1 • T 2 ) ) a s a - l  
B ~ 0  

c 3 = ( 1 2 2  ± 3 ) . 1 0  -3  , 

C4----(1.5-4-0.1). 1 0 - 3 ;  

TE TM 

B T-'~"~'~ 0 
= - - f x a c f x b d c 5 ( S  1 • S2)as a - l  , 

c s = (72.4 - 0 .2) .  10 -3 . 

(D,7)  

(D.8)  

W e  have neglected a term in the four-gluon vertices which gives zero on s-channel  

color  singlets (3.11). 
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